题目内容
【题目】化简:2(a+1)﹣a= .
【答案】a+2【解析】解:原式=2a+2﹣a =a+2.故答案是:a+2.首先把括号外的2乘到括号内,去括号,然后合并同类项即可.
【题目】如图,△ABC中,∠ABC=45,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH,与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=BF.
【题目】如果一个三角形的一个顶点是它的三条高的交点,那么这个三角形是( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等边三角形
【题目】如图,在平面直角坐标系中,已知点A(a-1,a+b),B(a,0),且|a+b-3|+(a-2b)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.
(1)求证:AO=AB;
(2)求证:△AOC≌△ABD;
(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?
【题目】若2a=3,2b=5,2c=75.
(1)求22a的值;
(2)求2c-b+a的值;
(3)试说明:a+2b=c.
【题目】小明设计了点做圆周运动的一个动画游戏,如上图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.
(1)甲运动4s后的路程是多少?
(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为 ;
(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;
(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.
【题目】若关于x的方程3x+a﹣2=0的解是x=﹣2,则a的值等于( )A.﹣8B.0C.2D.8
【题目】如图,在平面直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC.点E是y轴上任意一点记点E为(0,n).
(1)求直线BC的关系式;
(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的顶点F落在△ABC的边上?若存在,求出所有的n值并直接写出此时正方形DEFG与△ABC重叠部分的面积;若不存在,请说明理由.