题目内容
【题目】如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,OC=4,∠AOC=60°,且以点O为圆心,任意长为半径画弧,分别交OA、OC于点D、E;再分别以点D、点E为圆心,大于DE的长度为半径画弧,两弧相交于点F,过点O作射线OF,交BC于点P.则点P的坐标为( )
A.(4,2)B.(6,2)C.(2,4)D.(2,6)
【答案】B
【解析】
由作法得OP平分∠AOC,结合平行线的性质证明∠COP=∠CPO得到CP=CO=4,延长BC交y轴于H,可得BC⊥y轴,∠COH=30°,进而可求得CH=2,OH=,由此即可得到答案.
解:由题意得:OP平分∠COA,
∴∠COP=∠POA,
∵BC∥OA,
∴∠CPO=∠POA,
∴∠COP=∠CPO,
∴OC=CP=4,
延长BC交y轴于H,
则BC⊥y轴,∠COH=30°,
∴CH=OC=2,
∴OH=,
∴点P点坐标为(6,),
故选:B.
【题目】如图,是⊙的直径,是⊙的一条弦,,的延长线交⊙于点,交的延长线于点,连接,且恰好∥,连接交于点,延长交于点,连接.
(1)求证:是⊙的切线;
(2)求证:点是的中点;
(3)当⊙的半径为时,求的值.
【题目】期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题:
(收集数据)
(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有 ;(只要填写序号即可)
①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生;
(整理数据)
(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:
①C类和D类部分的圆心角度数分别为 、
②估计全年级A、B类学生大约一共有 名;
成绩(分) | 频数 | 频率 |
A类(80~100) | 0.5 | |
B类(60~79) | 0.25 | |
C类(40~59) | 8 | |
D类(0~39) | 4 |
(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:
学校 | 平均分(分) | 极差(分) | 方差 | A、B类的频率和 |
第一中学 | 71 | 52 | 432 | 0.75 |
第二中学 | 71 | 80 | 497 | 0.82 |
你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.