题目内容
如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若AC=2
,CD=2,求⊙O的直径.
(1)求证:CD是⊙O的切线;
(2)若AC=2
5 |
(1)证明:连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠BAD,
∴∠DAC=∠OAC,
∴∠DAC=∠OCA,
∴AD∥OC,
∴∠ADC=∠OCF,
∵AD⊥DC,
∴∠ADC=90°,
∴∠OCF=90°,
∴OC⊥CD,
∵OC为半径,
∴CD是⊙O的切线.
(2)连接BC,
∵AB是直径,
∴∠ACB=90°=∠ADC,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴
=
,
在Rt△ADC中,AC=2
,CD=2,
∴AD=4,
∴
=
,
∴AB=5.
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠BAD,
∴∠DAC=∠OAC,
∴∠DAC=∠OCA,
∴AD∥OC,
∴∠ADC=∠OCF,
∵AD⊥DC,
∴∠ADC=90°,
∴∠OCF=90°,
∴OC⊥CD,
∵OC为半径,
∴CD是⊙O的切线.
(2)连接BC,
∵AB是直径,
∴∠ACB=90°=∠ADC,
∵∠DAC=∠BAC,
∴△ADC∽△ACB,
∴
AC |
AB |
AD |
AC |
在Rt△ADC中,AC=2
5 |
∴AD=4,
∴
2
| ||
AB |
4 | ||
2
|
∴AB=5.
练习册系列答案
相关题目