题目内容
【题目】在边长为3的等边△ABC的AB边上任取一点D,作DF⊥AC交AC于F,在BC的延长线上截取CE=AD,连接DE交AC于G,则FG的值为_____.
【答案】
【解析】
如图,过点D作DH∥BC,可证△ADH是等边三角形,可得AD=AH=DH,由直角三角形的性质可得AD=2AF=AH,由“AAS”可证△DHG≌△ECG,可得CG=HG,即可求解.
如图,过点D作DH∥BC,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=∠A=60°,
∵DH∥BC,
∴∠ADH=∠ABC=60°,∠AHD=∠ACB=60°,∠DGH=∠EGC,
∴△ADH是等边三角形,
∴AD=AH=DH,
∵∠A=60°,DF⊥AH,
∴∠ADF=30°,
∴AD=2AF,
∴AH=2AF,
∵CE=AD,
∴DH=CE,且∠DGH=∠EGC,∠DHG=∠ECG,
∴△DHG≌△ECG(AAS)
∴CG=HG,
∵FG=FH+HG=AH+CH,
∴FG=AC=,
故答案为:.
练习册系列答案
相关题目