题目内容
【题目】如图,在矩形ABCD中,AB=2,BC=4,⊙D的半径为1.现将一个直角三角板的直角顶点与矩形的对称中心O重合,绕着O点转动三角板,使它的一条直角边与⊙D切于点H,此时两直角边与AD交于E,F两点,则tan∠EFO的值为_____.
【答案】
【解析】分析: 本题可以通过证明∠EFO=∠HDE,再求出∠HDE的正切值就是∠EFO的正切值.
详解: 连接DH,作OG⊥CD于G,如图,
∵在矩形ABCD中,AB=2,BC=4,
∴BD==2,
∵O是对称中心,
∴OD=BD=,
∵OG⊥CD,
∴DG=CD=1,OG=BC=2,
∴OG为O的切线,
∵OH是D的切线,
∴DH⊥OH,OH=OG=2,
∵DH=1,
∴tan∠ADB==,tan∠HOD==,
∵∠ADB=∠HOD,
∴OE=ED,
设EH为x,则ED=OE=OHEH=2x,
∴1 +x =(2x) ,解得x=,
即EH=.
又∵∠FOE=∠DHO=90°,
∴FO∥DH,
∴∠EFO=∠HDE,
∴tan∠EFO=tan∠HDE==.
点睛: 本题主要是考查切线的性质及解直角三角形的应用,关键是利用平行把已知角代换成其它相等的容易求出其正切值的角.
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
【题目】幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:
猜“是大于的数”或“不是大于的数”;
猜“是的倍数”或“不是的倍数”;
如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?