题目内容
【题目】如图,某考察船在某海域进行科考活动,在点A测得小岛C在它的东北方向上,它沿南偏东37°方向航行了2海里到达点B处,又测得小岛C在它的北偏东23°方向上.
(1)求∠C的度数;
(2)求该考察船在点B处与小岛C之间的距离.(精确到0.1海里)
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,=1.41,=1.73)
【答案】(1)22°;(2)5.25.
【解析】
(1)由已知方位角,根据平行线的性质、角的和差关系及三角形的内角和定理可得∠CAB、∠ABC、∠C的度数.
(2)过点A作AM⊥BC,构造直角△ABM和直角△CAM,利用直角三角形的边角关系,可求出线段AM、CM、BM的长,从而问题得解.
解:(1)过点A作AM⊥BC,垂足为M.
由题意知:AB=2海里,∠NAC=∠CAE=45°,
∠SAB=37°,∠DBC=23°,
∵∠SAB=37°,DB∥AS,
∴∠DBA=37°,∠EAB=90°﹣∠SAB=53°.
∴∠ABC=∠ABD+∠DBC=37°+23°=60°,
∠CAB=∠EAB+∠CAE=53°+45°=98°.
∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣98°﹣60°=22°.
(2)在Rt△AMB中,∵AB=2海里,∠ABC=60°,
∴BM=1海里,AM=海里.
在Rt△AMC中,tanC=,
∴CM==4.25(海里)
∴CB=CM+BM=4.25+1=5.25(海里)
答:考察船在点B处与小岛C之间的距离为5.25海里.
【题目】钟南山院士在谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:
收集数据
甲小区:80 85 90 95 90 95 90 65 75 100 90 70 95 90 80 80 90 95 60 100
乙小区:60 80 95 80 90 65 80 85 85 100 80 95 90 80 90 70 80 90 75 100
整理数据
成绩(分) 小区 | ||||
甲小区 | ||||
乙小区 |
分析数据
数据名称 计量小区 | 平均数 | 中位数 | 众数 |
甲小区 | |||
乙小区 |
应用数据
(1)填空:=______,=______;
(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;
(3)社区管理人员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传新型冠状病毒肺炎防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.
【题目】某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解:B.比较了解:C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题:
对雾霾的了解程度 | 百分比 | |
A | 非常了解 | 5% |
B | 比较了解 | m% |
C | 基本了解 | 45% |
D | 不了解 | n% |
(1)本次参与调查的市民共有________人,m=________,n=________.
(2)统计图中扇形D的圆心角是________度.
(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和1名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).
【题目】某公司销售甲、乙两种品牌的投影仪,这两种投影仪的进价和售价如下表所示:
甲 | 乙 | |
进价(元/套) | 3000 | 2400 |
售价(元/套) | 3300 | 2800 |
该公司计划购进两种投影仪若干套,共需66000元,全部销售后可获毛利润9000元.
(1)该公司计划购进甲、乙两种品牌的投影仪各多少套?
(2)通过市场调研,该公司决定在原计划的基础上,减少甲种投影仪的购进数量,增加乙种投影仪的购进数量,已知乙种投影仪增加的数量是甲种投影仪减少的数量的2倍。若用于购进这两种投影仪的总资金不超过75000元,问甲种投影仪购进数量至多减少多少套?