题目内容
【题目】已知:△ABC为等边三角形.
(1)求作:△ABC的外接圆⊙O.(不写作法,保留作图痕迹)
(2)射线AO交BC于点D,交⊙O于点E,过E作⊙O的切线EF,与AB的延长线交于点F.
①根据题意,将(1)中图形补全;
②求证:EF∥BC;
③若DE=2,求EF的长.
【答案】(1)如图所示:⊙O即为所求.见解析;(2)①如图2,补全图形,见解析;②证明见解析;③EF=.
【解析】
(1)直接利用外接圆的作法作出三角形任意两边的垂直平分线,进而得出外接圆圆心,进而得出答案;
(2)①按题意画出图形即可;
②连接OB,OC,证明AE⊥BC.可得出AE⊥EF,则结论得证;
③得出∠BOD=60°,设OD=x,则OB=OE=2+x,得出cos∠BOD,
求出x=2,得出tan∠BAD,则可求出EF的值.
(1)如图所示:⊙O即为所求.
(2)①如图2,补全图形:
②证明:连接OB,OC,
∵OB=OC,
∴点O在线段BC的垂直平分线上,
∵△ABC为等边三角形,
∴AB=AC,
∴点A在线段BC的垂直平分线上,
∴AO垂直平分BC,
∴AE⊥BC.
∵直线EF为⊙O的切线,
∴AE⊥EF,
∴EF∥BC;
③解:∵△ABC为等边三角形,
∴∠BAC=60°,
∵AB=AC,AE⊥BC,
∴∠BAD=∠BAC,
∴∠BAD=30°,
∴∠BOD=60°,
∵DE=2,
设OD=x,
∴OB=OE=2+x,
在Rt△OBD中,∵OD⊥BC,∠BOD=60°,
∴cos∠BOD=,
∴x=2,
∴OD=2,OB=4,
∴AE=8,
在△AEF中,∵AE⊥EF,∠BAD=30°,
∴tan∠BAD=,
∴EF=.
【题目】如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.
小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小芸同学在读书时,发现了另外一个函数:对于自变量x2在﹣2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:
根据以上材料,回答问题:
(1)表格中α的值为 .
(2)如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.
①在这个函数关系中,自变量是 ,因变量是 ;(分别填入x1和x2)
②请在网格中建立平面直角坐标系,并画出这个函数的图象;
③根据画出的函数图象,当AP=3.5时,x2的值约为 .