题目内容
【题目】如图所示,在中,以为圆心,长为半径画弧交于点,再分别以点、为圆心,大于为半径画弧,两弧交于一点,连结交于点,连结.若,,则四边形的面积为____.
【答案】24
【解析】
由题意,先证明,结合平行四边形的性质得到AB=BE,进一步得到AF=BE,从而证明平行四边形ABEF是菱形,由菱形的性质及勾股定理求出AE,利用菱形的面积公式即可解答.
解:连接、.
由图可得,
在和中,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
又∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AB=BE,
∴平行四边形ABEF是菱形,
∴AE与BF互相垂直平分,
∴∠AOB=90°,,
∵AB=5,
在中,
.
故答案为:24
练习册系列答案
相关题目