题目内容
【题目】如图,在矩形中,是边的中点,,垂足为点,连接.则列四个结论:
①;②;③;④.其中正确的结论有:
A.4个B.3个C.2个D.1个
【答案】A
【解析】
①通过证明及对顶角相等即可得到答案;
②根据是边的中点及①中的相似可得可得答案;
③过D作DM∥BE交AC于N,利用平行四边形的性质证明DM垂直平分CF可得答案;
④由①中的相似得到,设,利用母子三角形的性质求出可得答案.
解:①如图,∵四边形ABCD是矩形,∴AD∥BC,
,
又因为:,
所以:,故①成立,
②因为:E是的中点,所以:,
因为:,
所以:,
设 则,
所以:,所以,故②成立,
③过D作DM∥BE交AC于N,
∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴BM=DE=BC,∴BM=CM, ∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故③正确;
④因为:,设,则,
所以:,,
因为:,所以:,
所以:,所以④成立;
故选A.
【题目】如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.
(1)求证:AE=CF;
(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.
【题目】某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.
(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;
C | D | 总计/t | |
A | 200 | ||
B | x | 300 | |
总计/t | 240 | 260 | 500 |
(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
总运费最小的调运方案;
(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.