题目内容

【题目】如图,AB为O的直径,弦CFAB于点E,CF=4,过点C作O的切线交AB的延长线于点D,D=30°,则OA的长为(  )

A. 2 B. 4 C. 4 D. 4

【答案】B

【解析】

由∠D=30°,利用切线的性质可得∠COB的度数,利用等边三角形的判定和性质及切线的性质可得∠BCD,易得BC=BD,由垂径定理得CE的长,在直角三角形COE中,利用锐角三角函数易得OC的长,得BD的长.

解:连结CO,BC,

∵CD切⊙OC,

∴∠OCD=90°,

又∵∠D=30°,

∴∠COB=60°,

∴△OBC是等边三角形,即BC=OC=OB,

∴∠BCD=90°﹣∠OCB=30°,

∴BC=DB,

又∵直径AB⊥弦CF,

∴直径AB平分弦CF,即CE=

Rt△OCE中,sin∠COE==

∴OC==4,

∴OA=OC=4.

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网