题目内容
【题目】如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E.
(1)若B、C在DE的同侧(如图1所示)且AD=CE,AB与AC垂直吗?为什么?
(2)若B、C在DE的两侧(如图2所示),其他条件不变,AB与AC是否垂直吗?若垂直请给出证明;若不垂直,请说明理由.
【答案】(1)证明见解析;(2)AB⊥AC.
【解析】试题分析:(1)由已知条件,证明△ABD≌△CAE,再利用角与角之间的关系求证∠BAD+∠CAE=90°,即可得到AB⊥AC;
(2)同(1),先证△ABD≌△CAE,再利用角与角之间的关系求证∠BAD+∠CAE=90°,即可证明AB⊥AC.
试题解析:(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵AB=AC,AD=CE,∴Rt△ABD≌Rt△CAE,∴∠DAB=∠ECA,∠DBA=∠ACE.
∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.
∠BAC=180°﹣(∠BAD+∠CAE)=90°,∴AB⊥AC.
(2)AB⊥AC.理由如下:
同(1)一样可证得△ABD≌△CAE,∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.
练习册系列答案
相关题目