题目内容
【题目】已知:关于x的二次函数y=x2+bx+c经过点(﹣1,0)和(2,6).
(1)求b和c的值.
(2)若点A(n,y1),B(n+1,y2),C(n+2,y3)都在这个二次函数的图象上,问是否存在整数n,使?若存在,请求出n;若不存在,请说明理由.
(3)若点P是二次函数图象在y轴左侧部分上的一个动点,将直线y=﹣2x沿y轴向下平移,分别交x轴、y轴于C、D两点,若以CD为直角边的△PCD与△OCD相似,请求出所有符合条件点P的坐标.
【答案】(1)n=3或n=-5 (2) (,-) 或(,-)
【解析】试题分析:(1)利用待定系数法即可解决问题.
(2)求出y1,y2,y3代入解方程即可解决问题,注意运算技巧.
(3)当D为直角顶点时,由图象可知不存在点P,使得△PCD为直角三角形,当C为直角顶点,CD为直角边时,作PE⊥OC于E.分两种情形①CD=2PC,②PC=2CD,
设直线y=-2x向下平移m个单位,则直线CD解析式为y=-2x-m,求出点P坐标(用m表示),代入抛物线解析式即可解决问题.
试题解析:(1)把(-1,0)和(2,6)代入y=x2+bx+c中,
得,解得,
∴b=1,c=0.
(2)由题意y1=n2+n,y2=(n+1)2+(n+1),y3=(n+2)2+(n+2),
∵,
∴,
∴,
∴,
整理得n2+3n-10=0,
解得n=2或-5.
经过检验n=2和-5是分式方程的解.
(3)当D为直角顶点时,由图象可知不存在点P,使得△PCD为直角三角形,当C为直角顶点,CD为直角边时,作PE⊥OC于E.
设直线y=-2x向下平移m个单位,则直线CD解析式为y=-2x-m,
∴点D坐标(0,-m),点C坐标(-,0),
∴OD=m,OC=,
∴OD=20C,
∵△PCD与△OCD相似,
∴CD=2PC或PC=2CD,
①当CD=2PC时,
∵∠PCD=90°,
∴∠PCE+∠DCO=90°,∠DCO+∠CDO=90°,
∴∠PCE=∠CDO,
∵∠PEC=∠COD=90°,
∴△COD∽△PEC,
∴,
∴EC=,PE=,
∴点P坐标(-m,-),代入y=x2+x,
得-=m2-m,解得m=或(0舍弃)
∴点P坐标(-,-).
②PC=2CD时,由,
∴EC=2m,PE=m,
∴点P坐标(-m,-m),代入y=x2+x,
得-m=m2-m,
解得m=和(0舍弃),
∴点P坐标(-,-).