题目内容

【题目】已知,如图, , ,,,P是边BC上的一动点,过点PPEAB,垂足为E,延长PE至点Q,使PQ=PC, 联结交边AB于点.

1)求AD的长;

2)设,的面积为y, y关于x的函数解析式,并写出定义域;

3)过点C, 垂足为F, 联结PFQF, 试探索当点P在边BC的什么位置时,为等边三角形?请指出点P的位置并加以证明.

【答案】(1)证明见解析;(2),定义域为.(3)点是边的中点,证明见解析.

【解析】

1)根据直角三角形的性质和三角形的内角和定理,进行计算,即可得到答案;

2)作,垂足为点.根据勾股定理进行计算,即可得到答案;

3)根据等腰三角形的性质和判定即可得到答案.

解:(1)在中,,∴

90° 90°

=90°,∴

,∴,∴

2)作,垂足为点

90°,∴=90°,∴,∴

,∴

,即

定义域为

(3)是边的中点.

证明:∵,是边的中点.

是等边三角形

,

是等边三角形

练习册系列答案
相关题目

【题目】下图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.

(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(-3,-1),在此坐标系下,B点的坐标为________________

(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为__________________

(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c(a≠0)的图象过OBC三点,则此函数图象的对称轴方程是________________.

【答案】 (-1,2) (2,0) x=1

【解析】分析:根据点的坐标建立坐标系,即可写出点的坐标.

画出点旋转后的对应点连接,写出点的坐标.

用待定系数法求出函数解析式,即可求出对称轴方程.

详解:(1)建立坐标系如图,

B点的坐标为

(2)线段BC如图,C点的坐标为

(3)把点代入二次函数,得

解得:

二次函数解析为:

对称轴方程为:

故对称轴方程是

点睛:考查图形与坐标;旋转、对称变换;待定系数法求二次函数解析式,二次函数的图象与性质.熟练掌握各个知识点是解题的关键.

型】解答
束】
18

【题目】特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立说出这两个两位数的乘积.如果这两个两位数分别写作ABAC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A(A+1)的乘积,后两位数字就是BC的乘积.

如:47×43=2021,61×69=4209.

(1)请你直接写出83×87的值;

(2)设这两个两位数的十位数字为x(x>3),个位数字分别为yz(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.

(3)99991×99999=___________________(直接填结果)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网