题目内容
【题目】如图,四边形中,连接、,点为上一点,连接,为等边三角形,,,,,则_________.
【答案】
【解析】
延长DA至F,使CD:EF=4:5,连接BF,过点F作FG⊥DB,交DB的延长线于G,过点B作BH⊥AD于H,即可证出△BCD∽△BEF,然后列出比例式求出BF,再利用锐角三角函数求出FG、BG和DG,再证出△BDH∽△FDG,求出BH、HD和AH,再利用勾股定理即可求出结论.
解:延长DA至F,使CD:EF=4:5,连接BF,过点F作FG⊥DB,交DB的延长线于G,过点B作BH⊥AD于H,
∵,
∴CD:EF=,∠BED+∠BCD=180°
∴△BCD∽△BEF,∠EBC+∠EDC=360°-(∠BED+∠BCD)=180°
∴BD:BF=CD:EF=,∠CBD=∠EBF
∴8:BF=,∠CBE=∠DBF
解得BF=10
∵△ACD为等边三角形
∴CD=AD,∠EDC=60°
∴∠EBC=120°
∴∠DBF=120°
∴∠FBG=180°-∠DBF=60°
∴FG=BF·sin∠FBG=,BG= BF·cos∠FBG=5
∴DG=BD+BG=13
根据勾股定理DF==
∵
∴CD=AD=4AE
∴EF=5AE
∴AF=EF-AE=4AE=AD
∴AF=AD=
∵∠BDH=∠FDG,∠BHD=∠FGD=90°
∴△BDH∽△FDG
∴
即
解得:DH=,BH=
∴AH=AD-DH=
在Rt△ABH中,AB=
故答案为:.
练习册系列答案
相关题目