题目内容

【题目】如图,在正方形ABCD中,点E、F分别在BC、CD上,且BE=DF,若∠EAF=30°,则sin∠EDF=

【答案】
【解析】解:∵四边形ABCD是正方形, ∴AB=AD,∠B=∠ADF=∠BAD=90°,
在△ABE和△ADF中,

∴△ABE≌△ADF,
∴∠BAE=∠FAD,
∵∠EAF=30°,
∴∠BAE=∠FAD=30°,
设正方形ABCD边长为a,
则tan30°=
∴BE= a,
∴EC=a﹣ a,DE= = a
∴sin∠EDF= = =
所以答案是:
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网