题目内容

【题目】如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.
(1)证明:CE=CF;
(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)

【答案】
(1)证明:如图(1),

∵AE是∠BAD的平分线,

∴∠BAF=∠DAF,

∵在平行四边形ABCD中,

∴AB∥DF,AD∥BC,

∴∠BAF=∠F,∠DAF=∠CEF,

∴∠F=∠DAF=∠CEF,

∴CE=FC


(2)解:四边形ABFC是矩形,

理由:如图(2),

∵∠B=60°,AD∥BC,

∴∠BAD=120°,

∵∠BAF=∠DAF,

∴∠BAF=60°,

则△ABE是等边三角形,

可得AB=BE=AE,∠BEA=∠AFC=60°,

∵BC=2AB,

∴AE=BE=EC,

∴△ABC是直角三角形,∠BAC=90°,

在△ABE和△FCE中

∴△ABE≌△FCE(ASA),

∴AB=FC,

又∵AB∥FC,

∴四边形ABFC是平行四边形,

再由∠BAC=90°,

故四边形ABFC是矩形.


【解析】(1)利用角平分线的性质结合平行四边形的性质得出∠BAF=∠F,∠DAF=∠CEF,进而得出答案;(2)利用等边三角形的判定方法得出△ABE是等边三角形,进而得出△ABE≌△FCE(ASA),即可得出AB=FC,进而结合矩形的判定方法求出即可.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网