题目内容

如图,在△ABC中,AB=AC,AE是角平分线,AD是△ABC外角∠CAG的平分线,CF⊥AD于F.
(1)试说明四边形AECF为矩形;
(2)当△ABC满足什么条件时,四边形AECF是一个正方形?请说明理由.
(1)因为∠BAE=∠CAE,∠GAD=∠CAD,
所以2(∠CAE+∠CAD)=180°,
所以∠CAE十∠CAD=90°,
即∠EAD=90°,
因为AB=AC,AE是角平分线,
所以AE⊥BC,
由于CF⊥AD,
所以四边形AECF是矩形.

(2)当∠BAC=90°,即△ABC是直角三角形时,四边形AECF是正方形,
理由:由于∠BAC=90°,
所以∠CAE=45°,
所以∠CAD=45°,
因为∠AEC=∠AFC=90°,AC=AC,
所以△AEC≌△AFC,
所以AE=AF,
所以四边形AECF是正方形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网