题目内容

如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连结BE、AF相交于点G,则下列结论:①BE=AF;②∠DAF=∠BEC;③∠AFB+∠BEC=90°;④AF⊥BE中正确的有(  )
A.①②③B.②③④C.①②③④D.①②④

∵四边形ABCD是正方形,
∴∠ABF=∠C=90°,AB=BC,
∵BF=CE,
∴△ABF≌△BCE.
∴AF=BE.(①正确)
∠BAF=∠CBE,∠BFA=∠BEC,(③错误)
∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,
∴∠DAF=∠BEC.(②正确)
∵∠BAF=∠CBE,∠BAF+∠AFB=90°,
∴∠CBE+∠AFB=90°,
∴AF⊥BE.(④正确)
所以正确的是①②④.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网