题目内容
【题目】如图,点E、F、G、H分别在菱形ABCD的四条边上,且BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH.
(1)求证:四边形EFGH是矩形;
(2)设AB=a,∠A=60°,当BE为何值时,矩形EFGH的面积最大?
【答案】
(1)证明:∵DG=DH,
∴∠DHG=∠DGH= ,
同理,∠CGF= ,
∴∠DGH+∠CGF= ,
又∵菱形ABCD中,AD∥BC,
∴∠D+∠C=180°,
∴∠DGH+∠CGF=90°,
∴∠HGF=90°,
同理,∠GHE=90°,∠EFG=90°,
∴四边形EFGH是矩形;
(2)解:AB=a,∠A=60°,则菱形ABCD的面积是: a2,
设BE=x,则AE=a﹣x,
则△AEH的面积是: ,
△BEF的面积是: ,
则矩形EFGH的面积y= a2﹣ ﹣ ,
即y=﹣ x2+ ax,
则当x= = 时,函数有最大值.
此时BE= .
【解析】(1)利用等腰三角形的性质:等边对等角,以及平行线的性质可以证得∠DGH+∠CGH=90°,则∠HGF=90°,根据三个角是直角的四边形是矩形,即可证得;(2)设BE的长是x,则利用x表示出矩形EFGH的面积,根据函数的性质即可求解.
【考点精析】通过灵活运用二次函数的最值和菱形的性质,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半即可以解答此题.
练习册系列答案
相关题目