题目内容
如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为t秒.
(1)当t= 时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的
△APD与△PCQ重叠部分的面积.
解:(1)7。
(2)点P从B到C的时间是3秒,此时点Q在AB上,则
当时,点P在BC上,点Q在CA上,若△PCQ为等腰三角形,则一定为等腰直角三角形,有:PC=CQ,即3﹣t=2t,解得:t=1。
当时,点P在BC上,点Q在AB上,若△PCQ为等腰三角形,则一定有PQ=PC(如图1),则点Q在PC的中垂线上。
作QH⊥AC,则QH=PC,△AQH∽△ABC,
在Rt△AQH中,AQ=2t﹣4,
则。
∵PC=BC﹣BP=3﹣t,
∴,解得:。
综上所述,在点P从点B到点C的运动过程中,当t=1或时,△PCQ为等腰三角形。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,
则PC=t﹣3,BQ=2t﹣9,即。
同(2)可得:△PCQ中,PC边上的高是:,
∴。
∴当t=5时,s有最大值,此时,P是AC的中点(如图2)。
∵沿直线PD折叠,使点A落在直线PC上,
∴PD一定是AC的中垂线。
∴AP=CP=AC=2,PD=BC=。
∴AQ=14﹣2t=14﹣2×5=4。
如图2,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
则QE=AQ=×4=,EA=AQ=×4=。
∴EP=,CE=。
设FP=x,FO=y,则CF=。
由△CFO∽△CPD得,即,∴。
由△PFO∽△PEQ得,即,∴。解得:。
∴△PCO即为折叠后的△APD与△PCQ重叠部分的面积。
解析试题分析:(1)首先利用勾股定理求得AC的长度,点P与点Q相遇一定是在P由B到A的过程中,利用方程即可求得:
在Rt△ABC中,∵∠C=90°,BC=3,AB=5,∴根据勾股定理得AC=4。
则Q从C到B经过的路程是9,需要的时间是4.5秒,此时P运动的路程是4.5,P和Q之间的距离是:3+4+5﹣4.5=7.5。
根据题意得:,解得:t=7。
(2)因为点P从B到C的时间是3秒,此时点Q在AB上,所以分(点P在BC上,点Q在CA上)和(点P在BC上,点Q在AB上)两种情况进行讨论求得t的值。
(3)在点Q从点B返回点A的运动过程中,P一定在AC上,则PC的长度是t﹣3,然后利用相似三角形的性质即可利用t表示出s的值,然后利用二次函数的性质即可求得s最大时t的值,此时,P是AC的中点,直线PD折叠,使点A落在直线PC上,则PD一定是AC的中垂线。因此,连接DC(即AD的折叠线)交PQ于点O,过Q作QE⊥CA于点E,过O作OF⊥CA于点F,则△PCO即为折叠后的△APD与△PCQ重叠部分的面积。应用△CFO∽△CPD和△PFO∽△PEQ得比例式求出OF的长即可求得△PCO即为折叠后的△APD与△PCQ重叠部分的面积。