题目内容
【题目】综合与实践:再探平行四边形的性质
问题情境:
学完平行四边形的有关知识后,同学们开展了再探平行四边形性质的数学活动,以下是“希望小组”得到的一个性质:
如图1,已知平行四边形中,,于点,垂直于点,则.
问题解决:
(1)如图2,当时,还成立吗?证明你发现的结论;
(2)如图2,连接和,若.求的度数;
(3)如图3,若,,点是射线上一点,且.则_________.(用含的三角函数表示)
【答案】(1)还成立,证明见解析;(2);(3).
【解析】
(1)先根据平行四边形的性质、平行线的性质可得,再根据四边形的内角和可得,然后根据等量代换即可得证;
(2)由(1)可知,从而可得出四点共圆,再根据圆周角定理即可得;
(3)如图(见解析),如图,过点A作于点E,先根据菱形的判定与性质得出,,,再根据角的和差、等量代换可得,然后根据等腰三角形的判定与性质可得,最后在中,利用余弦三角函数的定义即可得.
(1)还成立,证明如下:
∵四边形是平行四边形
∴
∴
在四边形中,,,即
∴
∴;
(2)由(1)知,
则如图,四点共圆
由圆周角定理得:;
(3)如图,过点A作于点E
四边形ABCD是平行四边形,且
平行四边形ABCD是菱形
,,
又
是等腰三角形
(等腰三角形的三线合一)
则在中,
即
故答案为:.
练习册系列答案
相关题目
【题目】二次函数(,,是常数,)的自变量x与函数值y的部分对应值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | 3 | 3 | … |
且当时,与其对应的函数值.有下列结论:①;②3是关于的方程的一个根;③.其中,正确结论的个数是( )
A.0B.1C.2/span>D.3