题目内容
【题目】如图,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).
(1)求直线AB的解析式;
(2)如图,以点A为直角顶点作∠CAD=90°,射线AC交x轴于点C,射线AD交y轴于点D.当∠CAD绕着点A旋转,且点C在x轴的负半轴上,点D在y轴的负半轴上时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围.
【答案】(1);(2)不变,值为8.
【解析】
(1)由、两点的坐标利用待定系数法可求得直线的解析式;
(2)过分别作轴和轴的垂线,垂足分别为、,可证明,可得到,从而可把转化为,再利用线段的和差可求得.
解:(1)设直线的解析式为:.
点,点在直线上,
,
解得.
直线的解析式为:;
(2)不变.
理由如下:
过点分别作轴、轴的垂线,垂足分别为、,如图1.
则,
又,
,
,
,
,
.
,
.
在和中,
,
,
.
.
故的值不发生变化,值为8.