题目内容
【题目】阅读并解决问题.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2﹣6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是实数,当x为何值时,此多项式2x2的最小值是多少.
【答案】(1)(a-2)(a-4);(2)13;97;(3)x=0时,2x2有最小值,即最小值为0.
【解析】
(1)直接在多项式后加1再减1,可以组成完全平方式;
(2)①加2ab再减2ab可以组成完全平方式;②在①得基础上,加2a2b2再减2a2b2,可以组成完全,可以组成完全平方式;
(3)根据非负数的非负性质进行求解.
解:(1)a2-6a+8,
=a2-6a+9-1,
=(a-3)2-1,
=(a-3-1)(a-3+1),
=(a-2)(a-4);
(2)a2+b2,
=(a+b)2-2ab,
=52-2×6,
=13;
a4+b4,
=(a2+b2)2-2a2b2,
=132-2×62,
=97;
(3)因为x2 0,
当x=0时,2x2 0,即最小值为0.
练习册系列答案
相关题目