题目内容

【题目】如图,一次函数ykx+b(k≠0)和反比例函数y(m≠0)分别交于点A(41)B(1a)

(1)求反比例函数和一次函数的解析式;

(2)求△AOB的面积;

(3)根据图象直接写出kx+bx的取值范围.

【答案】(1)y=;y=x-3;(2)SAOB=;(3)x>4-1<x<0.

【解析】

(1)把点A(4,1)与点B(-1,n)代入反比例函数y=得到m=4,即反比例函数的解析式为y=,把点A(4,1)与点B(-1,-4)代入一次函数y=kx+b,得到,解得:得到一次函数解析式为y=x-3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可可得结论.

(1)解:∵点A(4,1)与点B(-1,n)在反比例函数y=(m≠0)图象上,
∴m=4,即反比例函数的解析式为y=
x=1时,n=-4,即B(-1,-4),
∵点A(4,1)与点B(-1,-4)在一次函数y=kx+b(k≠0)图象上,
,解得:
∴一次函数解析式为y=x-3;
(2)解:对于y=x-3,当y=0时,x=3,
∴C(3,0)
∴SAOB=SAOC+SBOC=
(3)解:由图象可得,当-1<x<0x>4时,一次函数的值大于反例函数的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网