题目内容
【题目】如图,在△ABC中,AB=AC,D为BC的中点,四边形ABDE是平行四边形.
(1)求证:四边形ADCE是矩形;
(2)若AC、DE交于点O,四边形ADCE的面积为16,CD=4,求∠AOD的度数.
【答案】(1)见解析;(2)∠AOD=120°
【解析】
(1)已知四边形ABDE是平行四边形,只需证得它的一个内角是直角即可;在等腰△ABC中,AD是底边的中线,根据等腰三角形三线合一的性质即可证得∠ADC是直角,由此得证;
(2)根据矩形的性质得出AD的长度,进而得出∠DAC=30°即可求出答案.
(1)∵四边形ABDE是平行四边形,
∴AE∥BC,AB=DE,AE=BD.
∵D为BC中点,
∴CD=BD.
∴CD∥AE,CD=AE.
∴四边形ADCE是平行四边形.
∵AB=AC,D为BC中点,
∴AD⊥BC,即∠ADC=90°,
∴平行四边形ADCE是矩形;
(2)∵平行四边形ADCE是矩形,四边形ADCE的面积为16,CD=4,
∴ADCD=4AD=16,DO=AO=CO=EO,
解得:AD=4,
∴tan∠DAC=,
∴∠DAC=30°,
∴∠ODA=30°,
∴∠AOD=120°.
练习册系列答案
相关题目