题目内容

【题目】如果m是从﹣1,0,1,2四个数中任取的一个数,n是从﹣2,0,3三个数中任取的一个数,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为

【答案】
【解析】解:列表如下:

0

﹣1

2

1

﹣2

(0,﹣2)

(﹣1,﹣2)

(2,﹣2)

(1,﹣2)

0

(0,0)

(﹣1,0)

(2,0)

(1,0)

3

(0,3)

(﹣1,3)

(2,3)

(1,3)

由列表可知所有等可能的情况数有12种,其中P(m,n)在在二次函数y=(x﹣m)2+n的顶点在坐标轴上的有6种,所以二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率= =
所以答案是:
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小,以及对列表法与树状图法的理解,了解当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网