题目内容

【题目】如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=

(1)求BD的长;
(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;
(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.

【答案】
(1)

解:如图1,过A作AH⊥BD于H,

∵AD∥BC,AB=AD=5,

∴∠ABD=∠ADB=∠DBC,BH=HD,

在Rt△ABH中,

∵tan∠ABD=tan∠DBC=

∴cos∠ABD=

∴BH=DH=4,

∴BD=8;


(2)

解:∵△DCE是等腰三角形,且BC=BD=8,

∴①如图2,

当CD=DE时,即:CD=DE=BD﹣BE=8﹣x,

过点D作DG⊥BC于G,

在Rt△BDG中,tan∠DBC= ,BD=8,

∴DG= BD= ,BG= BD=

∴CG=8﹣BG=

在Rt△CDG中,根据勾股定理得,DG2+CG2=CD2

∴( 2+( 2=(8﹣x)2

∴x=8+ (舍)或x=8﹣

②如图3,

当CE=CD时,

过点C作CG⊥BD,

∴DG=EG= DE,

在Rt△BCG中,BC=8,tan∠DBC=

∴BG=

∴DG=BD﹣BG=

∴x=BE=BD﹣DE=BD﹣2DG=


(3)

解:∵BF=x,BC=10,

∴FC=10﹣x,

∵EF∥DC,

∴△FEB∽△CDB,

= =﹣ x2+ x(0<x<8)


【解析】(1)过A作AH⊥BD于H,再根据AD∥BC,AB=AD=5,可得∠ABD=∠ADB=∠DBC,BH=HD,再根据tan∠ABD=tan ,计算出BH=DH=4,进而得到BD=8;(2)分两种情况用锐角三角函数计算即可得出结论.(3)首先利用平行线的性质得出△FEB∽△CDB,即可得出y与x的函数关系式;
【考点精析】通过灵活运用梯形的定义和直角梯形,掌握一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形;一腰垂直于底的梯形是直角梯形即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网