题目内容
【题目】如图所示,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=70°,求∠DAE、∠BOA的度数.
【答案】∠DAE,∠BOA的度数分别是10°,125°
【解析】
根据角平分线的定义可得∠BAE=∠CAE=∠BAC=30°,在Rt△ADC中可求得∠CAD的度数,再根据∠DAE=∠CAE﹣∠CAD即可得解,根据三角形的内角和可得∠ABC的度数,即可得∠ABO的度数,再在△AOB中利用三角形的内角和为180°即可求得∠BOA的度数.
解∵AD⊥BC,
∴∠ADC=90°,
∵∠C=70°,
∴∠CAD=180°﹣90°﹣70°=20°,
∵∠BAC=60°,AE是∠BAC的角平分线,
∴∠EAC=∠BAE=30°,
∴∠EAD=∠EAC﹣∠CAD=30°﹣20°=10°,
∠ABC=180°﹣∠BAC﹣∠C=50°,
∵BF是∠ABC的角平分线,
∴∠ABO=25°,
∴∠BOA=180°﹣∠BAO﹣∠ABO=180°﹣30°﹣25°=125°.
故∠DAE,∠BOA的度数分别是10°,125°
练习册系列答案
相关题目
【题目】六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
滑行时间x/s | 0 | 1 | 2 | 3 | … |
滑行距离y/cm | 0 | 4 | 12 | 24 | … |
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?
(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.