题目内容
【题目】如图,已知直线y=x与反比例函数y=(x>0)的图象交于点A(2,m);将直线y=x向下平移后与反比例函数y=(x>0)的图象交于点B,且△AOB的面积为3.
(1)求k的值;
(2)求平移后所得直线的函数表达式.
【答案】(1)k=6;(2)平移后所得直线的函数表达式为y=x﹣3.
【解析】分析:(1)先根据一次函数解析式求点A的坐标,再利用待定系数法求k的值;
(2)作辅助线AH,得AH=2,根据同底等高的两个三角形面积相等得:S△AOB=S△AOC=3,可得OC=3,写出C(0,-3),根据平行可设直线BC的函数表达式为y=x+b,代入点C的坐标可得解析式.
详解:(1)∵点A(2,m)在直线y=x上,
∴m==3,则A(2,3);
又点A(2,3)在反比例函数y=(x>0)的图象上,
∴3=,则k=6;
(2)设平移后的直线与y轴交于点C,连接AC,过点A作AH⊥y轴于H,
则AH=2,
∵BC∥OA,
∴S△AOB=S△AOC=3,
∴OCAH=OC2=3,
则OC=3,
∵点C在y轴的负半轴上,
∴C(0,﹣3),
设直线BC的函数表达式为y=x+b,
∴将C(0,﹣3)代入得:b=﹣3,
∴平移后所得直线的函数表达式为y=x﹣3.
【题目】在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个记下颜色,再把它放回口袋中,不断重复,如表是活动进行中的一组数据统计:
摸球的次数m | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数n | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近________ ;
(2)假如你去摸一次,你摸到白球的概率是________,摸到黑球的概率是________;
(3)试估算口袋中黑球有________个,白球有________个.
【题目】小强在某超市同时购买A,B两种商品共三次,仅有第一次超市将A,B两种商品同时按折价格出售,其余两次均按标价出售. 小强三次购买A,B商品的数量和费用如下表所示:
A商品的数量(个) | B商品的数量(个) | 购买总费用(元) | |
第一次购买 | 8 | 6 | 930 |
第二次购买 | 6 | 5 | 980 |
第三次购买 | 3 | 8 | 1040 |
(1)求 A,B商品的标价;
(2)求的值.