题目内容

【题目】如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA= .特别地,当点D、E重合时,规定:λA=0.另外,对λB、λC作类似的规定.

(1)如图2,在△ABC中,∠C=90°,∠A=30°,求λA、λC
(2)在每个小正方形边长均为1的4×4的方格纸上,画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且λA=2,面积也为2;
(3)判断下列三个命题的真假(真命题打“√”,假命题打“×”):
①若△ABC中λA<1,则△ABC为锐角三角形;
②若△ABC中λA=1,则△ABC为直角三角形;
③若△ABC中λA>1,则△ABC为钝角三角形.

【答案】
(1)

解:如图,

作BC边上的中线AD,又AC⊥DC,

∴λA= =1,

过点C分别作AB边上的高CE和中线CF,

∵∠ACB=90°,

∴AF=CF,

∴∠ACF=∠CAF=30°,

∴∠CFE=60°,

∴λC= =cos60°=


(2)

解:如图:


(3)解:×;√;√
【解析】解: (3)①在第(1)题中,λC= ,而△ABC是直角三角形,故命题错误;②λA=1时,过顶点A的高线的垂足与三角形的顶点一定重合,故三角新一定是直角三角形,故命题正确;③λA>1时,过顶点A的高线的垂足与三角形的顶点一定在边的延长线上,则三角形一定是钝角三角形,故命题正确.
所以答案是:①×,②√,③√.
【考点精析】本题主要考查了三角形的“三线”和解直角三角形的相关知识点,需要掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网