题目内容
【题目】如图,Rt△AOB的斜边AB切⊙O于点C,OA交⊙O于点D,连接DC并延长交OB的延长线于点E.已知∠A=∠E,若AB=6,则BC的长为__________.
【答案】1.5
【解析】
由AB与⊙相切于C可得:OC⊥AB,可证得∠A=∠COE=∠E=x,利用三角形内角和即可求出x=30,利用30°的直角三角形的性质可得:BO=3及BC=1.5.
连接OC
∵AB与⊙相切于C
∴OC⊥AB
∴∠ABO+∠COB=90°,∠A+∠ABO=90°
∴∠A=∠COE
∵∠A=∠E
∴∠E=∠COE=∠A =x
∴在△ECO中,∠DCO=∠E+∠COE=2x
∵OC=OD
∴∠EDO=∠DCO=2x
在Rt△EOD中,∠E+∠EDO=90°
∴x+2x=90°
∴x=30°
在Rt△ABO中,∠A=30°,AB=6
∴BO=3
在Rt△BCO中,∠COB=30°,BO=3
∴BC=1.5
故答案为:1.5
练习册系列答案
相关题目
【题目】有这样一个问题探究函数(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:
下面是元元的探究过程,请你补充完整
x | …… | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | …… |
y | …… | 0 | 2.5 | 4 | m | 4 | 2.5 | 0 | 1 | …… |
(1)根据上表信息,其中b=____,c=_____,m=______.
(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;
(3)观察函数图象,请写出该函数的一条性质:______.
(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.