题目内容

【题目】如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.

(1)求证:CD=BE;

(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.

【答案】(1)详见解析;(2).

【解析】

(1)根据AD//BE可得∠DAE=∠E,由AE平分∠BAD可得∠DAE=∠EAB进而可得∠EAB=∠E,即可证明CD=BE.(2)根据平行四边形的性质可知AD=DF,由DF=CF,∠DAF=∠E,∠ADF=∠FCE可证明△ADF≌△ECF,得AF=EF,由DG是等腰三角形ADF的高可知AG=GF,根据勾股定理可求出AG的长,由AE=2AF求出AE的长即可.

(1)∵四边形ABCD是平行四边形,

∴CD//AB,

∴∠DAE=∠E,

∵AE平分∠BAD,

∴∠DAE=∠EAB,

∴∠EAB=∠E,

∴CD=BE.

(2)∵CD//AB.

∴∠BAF=∠DFA.

∵AE平分∠BAD,

∴∠DAE=∠EAB,

∴∠DAF=∠DFA.

∴DA=DF.

∵F为DC中点,AB=4,

∴DF=CF=AD=2,

DGAE,DG=1,

∴AG=GF=,AF=2AG=2

∵∠DAF=∠E,∠ADF=∠FCE,DF=CF.

∴△ADF≌△ECF.

∴AF=EF.

∴AE=2AF=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网