题目内容
【题目】如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
【答案】(1)详见解析;(2).
【解析】
(1)根据AD//BE可得∠DAE=∠E,由AE平分∠BAD可得∠DAE=∠EAB进而可得∠EAB=∠E,即可证明CD=BE.(2)根据平行四边形的性质可知AD=DF,由DF=CF,∠DAF=∠E,∠ADF=∠FCE可证明△ADF≌△ECF,得AF=EF,由DG是等腰三角形ADF的高可知AG=GF,根据勾股定理可求出AG的长,由AE=2AF求出AE的长即可.
(1)∵四边形ABCD是平行四边形,
∴CD//AB,
∴∠DAE=∠E,
∵AE平分∠BAD,
∴∠DAE=∠EAB,
∴∠EAB=∠E,
∴CD=BE.
(2)∵CD//AB.
∴∠BAF=∠DFA.
∵AE平分∠BAD,
∴∠DAE=∠EAB,
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC中点,AB=4,
∴DF=CF=AD=2,
∵DG⊥AE,DG=1,
∴AG=GF=,AF=2AG=2,
∵∠DAF=∠E,∠ADF=∠FCE,DF=CF.
∴△ADF≌△ECF.
∴AF=EF.
∴AE=2AF=4.
练习册系列答案
相关题目