题目内容
【题目】如图,已知矩形ABCD 中,E、F 分别为BC、AD 上的点,将四边形ABEF 沿直线EF 折叠后,点B 落在CD 边上的点G 处,点A 的对应点为点H.再将折叠后的图形展开,连接BF、GF、BG,若BF⊥GF.
(1)求证:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.
【答案】
(1)证明:∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∴∠AFB+∠ABF=90°,
∵BF⊥GF,
∴∠AFB+∠DFG=90°,
∴∠ABF=∠DFG,
由折叠知BF=GF,
在△ABF和△DFG中,
,
∴△ABF≌△DFG(AAS);
(2)解:由(1)得DF=AB=3,DG=AF,
∴DG=AF=AD﹣DF=5﹣3=2,
∵四边形ABCD是矩形,
∴CD=AB=3,BC=AD=5,∠C=90°,
∴CG=CD﹣DG=3﹣2=1,
∴tan∠CBG= .
【解析】(1)根据∠AFB+∠ABF=90°,∠AFB+∠DFG=90°,即可得到∠ABF=∠DFG,由折叠知BF=GF,根据AAS即可判定△ABF≌△DFG;(2)根据全等三角形的性质可得DF=AB=3,DG=AF,求得DG再根据,四边形ABCD是矩形,求得CG,即可得出tan∠CBG 的值.
【考点精析】通过灵活运用矩形的性质和翻折变换(折叠问题),掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.
练习册系列答案
相关题目