题目内容
【题目】如图, DE AB 于 E , DF AC 于 F ,若 BD CD 、 BE CF ,
(1)求证:AD平分BAC ;
(2)已知AC 14,BE 2,求AB的长
【答案】(1)见解析;(2)10.
【解析】
(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;
(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.
证明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
∴在Rt△BED和Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴DE=DF,
∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC;
(2)解:∵Rt△BED≌Rt△CFD,
∴AE=AF,CF=BE=2,
∵AC=14,
∴AF=AC-CF=14-2=12.
在Rt△AED和Rt△AFD中,
∵ ,
∴Rt△AED≌Rt△AFD,
∴AE=AF=12,
∴AB=AE-BE=12-2=10.
练习册系列答案
相关题目
【题目】在东西向的马路上有一个巡岗亭,巡岗员从岗亭出发以速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)第几次结束时巡逻员甲距离岗亭最远?距离有多远?
(2)甲巡逻过程中配置无线对讲机,并一直与留守在岗亭的乙进行通话,问甲巡逻过程中,甲与乙保持通话的时长共多少小时?