题目内容

【题目】(原题)已知直线ABCD,点P为平行线AB,CD之间的一点.如图1,若∠ABP=50°,∠CDP=60°,BE平分ABP,DE平分∠CDP,∠BED的度数

(探究)如图2,当点P在直线AB的上方时,若∠ABP=α,∠CDP=β,∠ABP和CDP的平分线交于点E1,∠ABE1∠CDE1的角平分线交于点E2,∠ABE2∠CDE2的角平分线交于点E3,…以此类推,求∠En的度数.

(变式)如图3,ABP的角平分线的反向延长线和CDP的补角的角平分线交于点E,试猜想P与E的数量关系,并说明理由.

【答案】【原题】55°;【探究】∠En的度数为(β﹣α);【变式】∠DEB=90°﹣P.理由见解析.

【解析】

EEF∥AB,依据平行线的性质,即可得到∠BED=∠BEF+∠DEF=∠ABE+∠CDE,依据角平分线即可得出∠BED的度数;【探究】依据平行线的性质以及三角形外角性质,求得∠E1=(β﹣α),∠E2=(β﹣α),∠E3=(β﹣α),以此类推∠En的度数为(β﹣α);【变式】过EEG∥AB,进而得出∠DEB=∠BEG+∠DEG=∠MBE+∠FDE=∠ABQ+∠FDE,再根据平行线的性质以及三角形外角性质,即可得到∠DEB=90°﹣(∠CDP﹣∠ABP)=90°﹣(∠AHP﹣∠ABP)=90°﹣∠P.

如图1,过EEF∥AB,而AB∥CD,

∴AB∥CD∥EF,

∴∠ABE=∠FEB,∠CDE=∠FED,

∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,

又∵∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,

∴∠ABE=∠ABP=25°,∠CDE=∠CDP=30°,

∴∠BED=25°+30°=55°,

故答案为:55°;

【探究】

如图2,∵∠ABP和∠CDP的平分线交于点E1

∴∠ABE1=∠ABP=α,∠CDE1=∠CDP=

∵AB∥CD,

∴∠CDF=∠AFE1=

∴∠E1=∠AFE1﹣∠ABE1=α=(β﹣α),

∵∠ABE1与∠CDE1的角平分线交于点E2

∴∠ABE2=∠ABE1=α,∠CDE2=∠CDE1=

∵AB∥CD,

∴∠CDG=∠AGE2=

∴∠E2=∠AGE2﹣∠ABE2=(β﹣α),

同理可得,∠E3=(β﹣α),

以此类推,∠En的度数为(β﹣α).

【变式】

∠DEB=90°﹣∠P.理由如下:

如图3,过EEG∥AB,而AB∥CD,

∴AB∥CD∥EG,

∴∠MBE=∠BEG,∠FDE=∠GED,

∴∠DEB=∠BEG+∠DEG=∠MBE+∠FDE=∠ABQ+∠FDE,

又∵∠ABP的角平分线的反向延长线和∠CDP的补角的角平分线交于点E,

∴∠FDE=∠PDF=(180°﹣∠CDP),∠ABQ=∠ABP,

∴∠DEB=∠ABP+(180°﹣∠CDP)=90°﹣(∠CDP﹣∠ABP),

∵AB∥CD,

∴∠CDP=∠AHP,

∴∠DEB=90°﹣(∠CDP﹣∠ABP)=90°﹣(∠AHP﹣∠ABP)=90°﹣∠P.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网