题目内容
【题目】某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.
(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?
(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?
【答案】(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.
【解析】
(1)根据题意列出二元一次方程组即可解题,(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,根据题意建立一元一次不等式组求出所有满足条件的方案,再表示出总资金y=5m+800,根据一次函数的单调性即可确定所选方案,求最少资金..
解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,
,
解得:,
答:(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;
(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,
,解得,20≤m≤22,
∵m为整数,
∴m=20,21,22,
∴共有三种购买方案,
方案一:购买A型扫地车20辆,B型扫地车20辆;
方案二:购买A型扫地车21辆,B型扫地车19辆;
方案三:购买A型扫地车22辆,B型扫地车18辆;
∵y=25m+20(40﹣m)=5m+800,k=50,
∴y随着x的增大而增大,
∴当m=20时,y取得最小值,此时y=900,
答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.