题目内容
【题目】湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为 万元;放养 天的总成本为 万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是 万元,收购成本为 万元,求 和 的值;
(2)设这批淡水鱼放养 天后的质量为 ( ),销售单价为 元/ .根据以往经验可知: 与 的函数关系为 ; 与 的函数关系如图所示.
①分别求出当 和 时, 与 的函数关系式;
②设将这批淡水鱼放养 天后一次性出售所得利润为 元,求当 为何值时, 最大?并求出最大值.(利润=销售总额-总成本)
【答案】
(1)
解:依题可得:
解得
答:a的值为0.04,b的值为30.
(2)
解:①当0≤t≤50时,设y与t的函数关系式为y=k1t+n1.
把点(0,15),(50,25)的坐标分别代入得:
解得:
∴y与t的函数关系式为y=t+15.
当50<t≤100时,设y与t的函数关系式为y=k2t+n2.
把点(50,25)和(100,20)的坐标分别代入得 :
解得 :
∴y与t的函数关系式为y=-t+30.
②由题意得,当0≤t≤50时,
W=20000×(t+15)-(400t+300000)=3600t
∵3600>0,∴当t=50时,W最大值=180000(元)
当50<t≤100时,W=(100t+15000)(-t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250
∵-10<0,∴当t=55时,W最大值=180250
综上所述,当t为55天时,W最大,最大值为180250元.
【解析】(1)根据题意,列方程组求解即可.
(2)通过图像找到相应的点的坐标,根据待定系数法分类列出方程组即可得到函数解析式;然后根据利润=销售总额-总成本=销售单价×销售天数-(放养总费用+收购成本),然后根据一次函数的特点和二次函数的最值求解即可.
【考点精析】本题主要考查了解二元一次方程组和确定一次函数的表达式的相关知识点,需要掌握二元一次方程组:①代入消元法;②加减消元法;确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.