题目内容

已知:如图,AB为⊙O的直径,AC、BC为弦,点P为数学公式上一点,AB=10,AC:BC=3:4.
(1)当点P与点C关于直线AB对称时(如图1),求PC的长;
(2)当点P为数学公式的中点时(如图2),求PC的长.

解:(1)在⊙O中,如图
∵AB是直径,
∴∠ACB=90゜.
∵点P与点C关于AB对称,
∴PC⊥AB,且CD=DP.
∴由三角形面积得:CD•AB=AC•BC.
∵AB=10,AC:BC=3:4,
∴由勾股定理求得AC=6,BC=8.
∴CD=
∴PC=2CD=9.6;

(2)过点B作BE⊥PC于点E,连接PB,
由(1)得AC=6,BC=8.
∵点P为 的中点,∴∠ACP=∠BCP=45°.
在Rt△BEC中,可求得CE=BE=
∵∠A=∠P,∠ACB=∠BEC=90°,
∴tan∠P=tan∠A.


∴PC=CE+EP=
分析:(1)根据题意求得PC⊥AB,且CD=DP,然后根据勾股定理求出CD的长;
(2)过点B作BE⊥PC于点E,连接PB,由(1)问求出AC和BC的长,然后根据题干条件求出EP的长,即可求出PC.
点评:本题主要考查圆周角定理、勾股定理和垂径定理的知识点,解答本题的突破口利用好圆周角定理和垂径定理,此题难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网