题目内容

如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于 点E,点D为AB的中点,连接DE,则△BDE的周长是
A.B.10C.D.12
B

试题分析:先根据等腰三角形三线合一的性质证得AE⊥BC,E为BC的中点,再根据直角三角形的性质求得DE的长,从而可以求得结果.
∵AB=AC=6,BC=8,AE平分∠BAC
∴BE=4,AE⊥BC
∵点D为AB的中点
∴DE=BD=3
∴△BDE的周长=3+3+4=10
故选B.
点评:解题的关键是熟练掌握等腰三角形三线合一的性质:等腰三角形的顶角平分线、底边上的高、底边的中线重合;直角三角形斜边上的中线等于斜边的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网