题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA<1).下列结论:①2a+b>0;②abc<0; ③若OC=2OA,则2b﹣ac=4; ④3a﹣c<0.其中正确的个数是(
A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:①∵抛物线的开口向下, ∴a<0.
∵抛物线的对称轴﹣ >1,
∴b>﹣2a,即2a+b>0,①成立;
②∵b>﹣2a,a<0,
∴b>0,
∵抛物线与y轴的交点在y轴的负半轴,
∴c<0,
∴abc>0,②错误;
③点A的横坐标为 ,点C的纵坐标为c,
∵OC=2OA,
∴﹣c= ,整理得:2b﹣ac=4,③成立;
④∵抛物线的对称轴1<﹣ <2,
∴﹣2a<b<﹣4a,
∵当x=1时,y=a+b+c>0,
∴a﹣4a+c>0,即3a﹣c<0,④正确.
综上可知正确的结论有3个.
故选C.
【考点精析】通过灵活运用二次函数图象以及系数a、b、c的关系,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网