题目内容
【题目】如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.
【答案】(1)GE=GD+DF,证明见解析;(2)β=2α时,GE=GD+DF仍然成立,理由见解析;(3)△BMN的周长没有变化,周长为2.
【解析】
(1)由正方形的性质可得∠BCD=∠B=∠ADC=90°,BC=CD,由∠CEG=45°可得∠BCE+∠DCG=45°,利用SAS可证明△BCE≌△DCF,可得∠BCE=∠DCF,CE=CF,即可得出∠FCG=45°,可得∠FCG=∠GCE,利用SAS可证明△CEG≌△CFG,可得EG=FG,根据BE=DF即可得出GE=GD+BE;
(2)①如图,延长AD到F,使DF=BE,连接CF,利用SAS可证明△BCE≌△DCF,可得∠BCE=∠DCF,CE=CF,根据GE=GD+BE可得EG=GF,利用SSS可证明△CEG≌△CFG,可得∠GCF=∠GCE,由∠GCF=∠GCD+∠DCF可得∠GCE=∠GCD+∠BCE,即可得出∠BCD=2∠GCE,可得答案;
②如图,延长BA,交y轴于H,由旋转的性质可得∠HOA=∠NOC,利用ASA可证明△HOA≌△NOC,可得AH=CN,OH=ON,由直线OM的解析式可得∠HAM=∠MON=45°,利用SAS可证明△HOM≌△NOM,可得HM=MN,可得MN=AM+CN,即可得出△MBN的周长p=AB+BC=2,即可证明△MBN的周长没有变化.
(1)GE=GD+DF,理由如下:
∵ABCD是正方形,
∴∠BCD=∠B=∠ADC=90°,BC=CD,
在△BCE和△DCF中,,
∴△BCE≌△DCF,
∴CE=CF,∠BCE=∠DCF,
∵∠GCE=45°,
∴∠BCE+∠DCG=45°,
∴∠DCF+∠DCG=45°,即∠GCF=45°,
∴∠GCF=∠GCE,
在△CEG和△CFG中,,
∴△CEG≌△CFG,
∴GE=GF=GD+DF.
(2)当β=2α时,GE=GD+DF仍然成立,理由如下:
如图,延长AD到F,使DF=BE,连接CF,
在△BCE和△DCF中,,
∴△BCE≌△DCF,
∴CE=CF,∠BCE=∠DCF,
∵EG=GD+BE,
∴EG=GD+DF=GF,
在△CEG和△CFG中,,
∴△CEG≌△CFG,
∴∠ECG=∠FCG,
∴∠ECG=∠DCF+∠DCG=∠BCE+∠DCG,
∴∠BCD=2∠ECG,即β=2α,
∴当β=2α时,图1中GE,BE,GD三线段之间的关系仍然成立.
(3)如图,延长BA,交y轴于H,
∵将正方形OABC绕O点顺时针旋转,
∴∠HOA=∠NOC,
在△HOA和△NOC中,,
∴△HOA≌△NOC,
∴AH=CN,OH=ON,
∵直线OM的解析式为y=x,
∴∠HOM=∠MON=45°,
在△HOM和△NOM中,,
∴HM=MN,
∴MN=AM+AH=AM+CN,
∴△BMN的周长p=BM+MN+BN=BM+AM+CN+BN=AB+BC=2,
∴△BMN的周长没有变化,周长为2.
【题目】为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°,根据图表中提供的信息,回答下列问题:
体育成绩统计表 | ||
体育成绩(分) | 人数(人) | 百分比(%) |
26 | 8 | 16 |
27 | 12 | 24 |
28 | 15 | |
29 | n | |
30 |
(1)求样本容量及n的值;
(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数人数 |
第1组 | 6 | |
第2组 | 8 | |
第3组 | 14 | |
第4组 | a | |
第5组 | 10 |
请结合图表完成下列各题:
求表中a的值; 频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.