题目内容
【题目】如图,在四边形中, ,对角线平分,连接,,若,,则_________________.
【答案】10
【解析】
由等腰三角形的性质和角平分线的性质可推出AD∥BC,然后根据平行线的性质和已知条件可推出CA=CD,可得CB=CA=CD,过点C作CE⊥BD于点E,CF⊥AB于点F,如图,根据等腰三角形的性质和已知条件可得DE的长和,然后即可根据AAS证明△BCF≌△CDE,可得CF=DE,再根据三角形的面积公式计算即得结果.
解:∵,∴∠CBD=∠CDB,
∵平分,∴∠ADB=∠CDB,
∴∠CBD=∠ADB,∴AD∥BC,∴∠CAD=∠ACB,
∵,,∠CBD=∠CDB,
∴,∴,
∴CA=CD,∴CB=CA=CD,
过点C作CE⊥BD于点E,CF⊥AB于点F,如图,则,,
∵,,∴,
在△BCF和△CDE中,∵,∠BFC=∠CED=90°,CB=CD,
∴△BCF≌△CDE(AAS),∴CF=DE=5,
∴.
故答案为:10.
练习册系列答案
相关题目