题目内容
【题目】我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:
(1)九(1)班复赛成绩的中位数是 分,九(2)班复赛成绩的众数是 分;
(2)小明同学已经算出了九(1)班复赛的平均成绩 =85分;方差S2= [(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;
(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?
【答案】(1)85,100;(2)85,160;(3)九(1)班的成绩比较稳定,理由见解析
【解析】
(1)利用统计图得到九(1)、九(2)班选手的得分,再根据中位数和众数的概念即可得出
(2)利用统计图得到九(2)班的选手的得分,然后利用平均数的计算方法和方差公式计算九(2)班复赛的平均成绩和方差;
(2)利用方差的意义进行判断
解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;
(2)九(2)班的选手的得分分别为70,100,100,75,80,
所以九(2)班成绩的平均数=(70+100+100+75+80)=85,
九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;
(3)平均数一样的情况下,九(1)班方差小,
所以九(1)班的成绩比较稳定.
【题目】小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况、他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
分组 | 频数 | 百分比 |
600≤x<800 | 2 | 5% |
800≤x<1000 | 6 | 15% |
1000≤x<1200 | 45% | |
9 | 22.5% | |
1600≤x<1800 | 2 | |
合计 | 40 | 100% |
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?