题目内容
【题目】(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图(1),在中,点在线段上,,,,,求的长.经过社团成员讨论发现:过点作,交的延长线于点,通过构造就可以解决问题,如图(2).请回答:______.
(2)求的长.
(3)请参考以上解决思路,解决问题:如图(3),在四边形中,对角线与相交于点,,,,,求的长.
【答案】(1)75°;(2);(3).
【解析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°;
(2)结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB的长;
(3)过点B作BE∥AD交AC于点E,同(1)可得出AE的长.在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
(2)∵∠BOD=∠COA,∠ADB=∠OAC,
∴△BOD∽△COA,
∴.
又∵AO,
∴ODAO,
∴AD=AO+OD=.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,
∴AB=AD=.
(3)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=,
∴EO,
∴AE=.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即()2+BE2=(2BE)2,
解得:BE=,
∴AB=AC=,AD=4.
在Rt△CAD中,AC2+AD2=CD2,即,
解得:CD=.