题目内容

【题目】如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.

(1)求证:BE=CE

(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)

①求证:△BEM≌△CEN;

②若AB=2,求△BMN面积的最大值;

③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

【答案】(1)详见解析;(2)①详见解析;②2;③.

【解析】

(1)只要证明BAE≌△CDE即可;

(2)①利用(1)可知EBC是等腰直角三角形,根据ASA即可证明;

②构建二次函数,利用二次函数的性质即可解决问题;

③如图3中,作EHBGH.设NG=m,则BG=2m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.

(1)证明:如图1中,

∵四边形ABCD是矩形,

AB=DC,A=D=90°,

EAD中点,

AE=DE,

∴△BAE≌△CDE,

BE=CE.

(2)①解:如图2中,

由(1)可知,EBC是等腰直角三角形,

∴∠EBC=ECB=45°,

∵∠ABC=BCD=90°,

∴∠EBM=ECN=45°,

∵∠MEN=BEC=90°,

∴∠BEM=CEN,

EB=EC,

∴△BEM≌△CEN;

②∵△BEM≌△CEN,

BM=CN,设BM=CN=x,则BN=4-x,

SBMN=x(4-x)=-(x-2)2+2,

-<0,

x=2时,BMN的面积最大,最大值为2.

③解:如图3中,作EHBGH.设NG=m,则BG=2m,BN=EN=m,EB=m.

EG=m+m=(1+)m,

SBEG=EGBN=BGEH,

EH==m,

RtEBH中,sinEBH=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网