题目内容
【题目】如图,AB是⊙O的直径,C为⊙O上一点,PC切⊙O于C,AE⊥PC交PC的延长线于E,AE交⊙O于D,PC与AB的延长线相交于点P,连接AC、BC.
(1)求证:AC平分∠BAD;
(2)若PB:PC=1:2,PB=4,求AB的长.
【答案】
(1)
解:(1)如图所示:连结OC.
∵PC是⊙O的切线,
∴OC⊥EP.
又∵AE⊥PC,
∴AE∥OC.
∴∠EAC=∠ACO.
又∵∠ACO=∠AOC,
∴∠EAC=∠OAC.
∴AC平分∠BAD;
(2)
解:(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵OB=OC,
∴∠OCB=∠ABC.
∵∠PCB+∠OCB=90°,
∴∠PCB=∠PAC.
∵∠P=∠P,
∴△PCA∽△PBC,
∴ = ,
∴PA= =16.
∴AB=PA﹣PB=16﹣4=12.
【解析】(1)先AE∥OC,然后依据平行线的性质可得到∠EAC=∠ACO.,接下来由∠ACO=∠AOC,可证明∠EAC=∠OAC;(2)先证明∠PCB=∠PAC,从而可证明△PCA∽△PBC,依据相似三角形的性质可求得PA的长,最后依据AB=PA﹣PB求解即可.
练习册系列答案
相关题目