题目内容
【题目】△ABC中,最小内角∠B=24°,若△ABC被一直线分割成两个等腰三角形,如图为其中一种分割法,此时△ABC中的最大内角为90°,那么其它分割法中,△ABC中的最大内角度数为_____.
【答案】117°或108°或84°.
【解析】
根据等腰三角形的性质进行分割,写出△ABC中的最大内角的所有可能值.
①∠BAD=∠BDA=(180°﹣24°)=78°,∠DAC=∠DCA=∠BDA=39°,如图1所示:
∴∠BAC=78°+39°=117°;
②∠DBA=∠DAB=24°,∠ADC=∠ACD=2∠DBA=48°,如图2所示:
∴∠DAC=180°﹣2×48°=84°,
∴∠BAC=24°+84°=108°;
③∠DBA=∠DAB=24°,∠ADC=∠DAC=2∠DBA=48°,如图3所示:
∴∠BAC=24°+48°=72°,∠C=180°﹣2×48°=84°;
∴其它分割法中,△ABC中的最大内角度数为117°或108°或84°,
故答案为:117°或108°或84°.
【题目】蜀山区植物园是一座三面环水的半岛园区,拥有梅园、桂花园、竹园、木兰园、水景园等示范区。为了种植植物,需要从甲乙两地向园区A,B两个大棚配送营养土,已知甲地可调出50吨营养土,乙地可调出80吨营养土,A棚需70吨营养土,B棚需60吨营养土,甲乙两地运往A,B两棚的运费如下表所示(表中运费栏“元/吨”表示运送每吨营养土所需费用)。
运费(元/吨) | ||
A | B | |
甲地 | 12 | 12 |
乙地 | 10 | 8 |
运往A、B两地的吨数 | ||
A | B | |
甲地 | x | 50-x |
乙地 | ( ) | ( ) |
(1)设甲地运往A棚营养土x吨,请用关于x的代数式完成上表;
(2)设甲地运往A棚营养土x吨,求总运费y(元)关于x(吨)的函数关系式(要求写出变量取值范围);
(3)当甲、乙两地各运往A、B两棚多少吨营养土时,总运费最省?最省的总运费是多少?