题目内容
【题目】如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.
(1)图b中的阴影部分面积为 ;
观察图b,请你写出三个代数式,,mn之间的等量关系是 ;
(3)若x+y=﹣6,xy=2.75,利用提供的等量关系计算:x﹣y= ;
(4)实际上有许多代数恒等式可以用图形的面积来表示,如图C,它表示了2+3mn+=(m+n)(2m+n),试画出一个几何图形的面积是+4ab+3,并能利用这个图形将+4ab+3进行因式分解.
【答案】-2mn+或;=+4mn;±5;略.
【解析】
试题主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.阴影部分的面积等于边长为m+n的正方形的面积减去4个长为m,宽为n的长方形的面积;直接利用正方形的面积的两种求法作为相等关系列式子即可;先画图,再利用图象所展示的位置关系和数量关系列式子即可
试题解析:(1)、-2mn+或;
(2)、=+4mn;
(3)、∵-4xy=36-11=25 ∴x﹣y=±5;
(4)、+4ab+3=(a+b)(a+3b).
练习册系列答案
相关题目