题目内容

【题目】已知,如图,AB∥CD,分别探究下列四个图形(图①、②、③、④)中∠APC和∠PAB、∠PCD的数量关系,用等式表示出来.

(1)设∠APC=m,∠PAB=n,∠PCD=t.

请用含m,n,t的等式表示四个图形中相应的∠APC和∠PAB、∠PCD的数量关系.(直接写出结果)

图①:

图②:

图③:

图④: .

(2)在(1)中的4个结论中选出一个你喜欢的结论加以证明.

【答案】(1)图①:m=n+t;图②:m+n+t=360°;图③:m+n=t;图④:m﹣t+n=180°(2)详见解析.

【解析】(1)依据∠APC=m,PAB=n,PCD=t,写出∠APC和∠PAB、PCD的数量关系即可

(2)图①中,作PEAB;图②中,作PFAB;图③中运用三角形外角性质;图④中,作PHAB,分根据平行线的性质进行推导计算即可得出结论.

若选图①,过P作PE∥AB,则PE∥CD,

∴∠A=∠APE=n,∠C=∠CPE=t,

∴∠APC=∠APE+∠CPE=∠A+∠C,即m=n+t;

其他参考答案

若选图②,

过P作PF∥AB,则PF∥CD,

∴∠A+∠APF=180°,∠C+∠CPF=180°,

∴∠A+∠APF+∠C+∠CPF=180°×2=360°,

即∠A+∠APC+∠C=360°,∴m+n+t=360°;

若选图③,

∵AB∥CD,∴∠PGB=∠C,

又∵∠PGB=∠A+∠APC,

∴∠C=∠A+∠APC,即m+n=t;

若选图④,

过P作PH∥AB,则PH∥CD,

∴∠A+∠APH=180°,∠C=∠CPH=t,

又∵∠APH=∠APC﹣∠CPH=m﹣t,

∴n+m﹣t=180°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网