题目内容
【题目】我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%
(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?
(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?
(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?
【答案】
(1)解:设购买甲种鱼苗x条,乙种鱼苗y条,
根据题意得: ,解得: ,
答:购买甲种鱼苗350条,乙种鱼苗250条
(2)解:设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,
根据题意得:90%m+80%(600﹣m)≥85%×600,
解得:m≥300,
答:购买乙种鱼苗至少300条
(3)解:设购买鱼苗的总费用为w元,则w=20m+16(600﹣m)=4m+9600,
∵4>0,
∴w随m的增大而增大,
又∵m≥300,
∴当m=300时,w取最小值,w最小值=4×300+9600=10800(元).
答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元
【解析】(1)设购买甲种鱼苗x条,乙种鱼苗y条,根据“购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设购买乙种鱼苗m条,则购买甲种鱼苗(600﹣m)条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m的一元一次不等式,解不等式即可得出m的取值范围;(3)设购买鱼苗的总费用为w元,根据“总费用=甲种鱼苗的单价×购买数量+乙种鱼苗的单价×购买数量”即可得出w关于m的函数关系式,根据一次函数的性质结合m的取值范围,即可解决最值问题.本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的性质以及一次函数的性质,解题的关键是:(1)根据数量关系得出关于x、y的二元一次方程组;(2)根据数量关系得出关于m的一元一次不等式;(3)根据数量关系得出w关于m的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系得出不等式(方程组或函数关系式)是关键.